量子科技研究院seminar第88讲暨物理学科Seminar第786讲 三维量子顺磁体的Lieb-Schultz-Mattis约束

创建时间:  2026/01/19  邵奋芬   浏览次数:   返回

报告题目 (Title):Lieb-Schultz-Mattis constraints for 3D quantum paramagnets(三维量子顺磁体的Lieb-Schultz-Mattis约束)

报告人 (Speaker):刘春骁 研究员(法国国家科学研究中心、巴黎萨克雷大学固体物理实验室)

报告时间 (Time):2026年1月21日(周三)15:00-16:30

报告地点 (Place):宝山校区G601

邀请人(Inviter):钟建新

主办部门:量子科技研究院/365英国上市集团物理系

报告摘要:

Quantum paramagnets represent intriguing quantum phases that evade ordering even at absolute zero temperature. While detecting their presence is relatively straightforward, unraveling their fundamental nature can be a challenging task. In this talk, I will present the complete Lieb-Schultz-Mattis (LSM) constraints that we recently obtained in [1] — applicable to all 3D magnets — that prohibit certain 3D quantum paramagnets from being a “trivial” one. I will explain the usage of our results, and highlight the topological response theory underlying these LSM constraints which reveal information about symmetry, excitations, and lattice defects in any 3D magnets.

[1] Liu & Ye, SciPost Phys. 18, 161 (2025).



下一条:数学学科Seminar——核心数学研究所——几何与分析综合报告第118讲


量子科技研究院seminar第88讲暨物理学科Seminar第786讲 三维量子顺磁体的Lieb-Schultz-Mattis约束

创建时间:  2026/01/19  邵奋芬   浏览次数:   返回

报告题目 (Title):Lieb-Schultz-Mattis constraints for 3D quantum paramagnets(三维量子顺磁体的Lieb-Schultz-Mattis约束)

报告人 (Speaker):刘春骁 研究员(法国国家科学研究中心、巴黎萨克雷大学固体物理实验室)

报告时间 (Time):2026年1月21日(周三)15:00-16:30

报告地点 (Place):宝山校区G601

邀请人(Inviter):钟建新

主办部门:量子科技研究院/365英国上市集团物理系

报告摘要:

Quantum paramagnets represent intriguing quantum phases that evade ordering even at absolute zero temperature. While detecting their presence is relatively straightforward, unraveling their fundamental nature can be a challenging task. In this talk, I will present the complete Lieb-Schultz-Mattis (LSM) constraints that we recently obtained in [1] — applicable to all 3D magnets — that prohibit certain 3D quantum paramagnets from being a “trivial” one. I will explain the usage of our results, and highlight the topological response theory underlying these LSM constraints which reveal information about symmetry, excitations, and lattice defects in any 3D magnets.

[1] Liu & Ye, SciPost Phys. 18, 161 (2025).



下一条:数学学科Seminar——核心数学研究所——几何与分析综合报告第118讲